If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=157
We move all terms to the left:
2x^2-(157)=0
a = 2; b = 0; c = -157;
Δ = b2-4ac
Δ = 02-4·2·(-157)
Δ = 1256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1256}=\sqrt{4*314}=\sqrt{4}*\sqrt{314}=2\sqrt{314}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{314}}{2*2}=\frac{0-2\sqrt{314}}{4} =-\frac{2\sqrt{314}}{4} =-\frac{\sqrt{314}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{314}}{2*2}=\frac{0+2\sqrt{314}}{4} =\frac{2\sqrt{314}}{4} =\frac{\sqrt{314}}{2} $
| 29n-30=20-5n | | 8(6x+5)=40-3x | | n–14.7=4.7 | | 9m-7=1 | | m/91=2/7 | | x-26.2=5.9 | | -22-k=-6(-8+6k) | | 7+5m+3=1+7m | | -22-k=-6(-8 | | 132=4(12x-9 | | 56=8+p | | -1=4x+35 | | -8+6(6x+1)=x-2 | | 11h-{2h-1)=118 | | -33+5x=-6(2x-5)/5 | | 8x-9/3-10=3 | | 3k−1=7k+2k | | 2x+4(2x+7)=3(2x+7) | | 4(n+7)=30+5n | | 10x+30=5x+20 | | x-0.12x=3168 | | -8.8(x-35)=26.4 | | 196-16^2=x | | 13x=11x–10 | | 0=10+10y–50 | | -5(6p+7)+5=7+7p | | 5y+2+y=-4y | | 16=3x+7+2x–6 | | 6+4y=-5(y+6) | | 16d+d−–14d−19d=12 | | –7+8n=7n | | |4(2y-3)|=28 |